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layer for shallow-water waves 
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To investigate reflection of a shallow-water soliton at  a sloping beach, the edge-layer 
theory is developed to  obtain a ‘reduced’ boundary condition relevant to the 
simplified shallow-water equation describing the weakly dispersive waves of small but 
finite amplitude. An edge layer is introduced to take account of the essentially 
two-dimensional motion that appears in the narrow region adjacent to the beach. By 
using the matched-asymptotic-expansion method, the edge-layer theory is formulated 
to cope with the shallow-water theory in the offshore region and the boundary 
condition a t  the beach. The ‘reduced’ boundary condition is derived as a result of 
the matching condition between the two regions. An explicit edge-layer solut,ion is 
obtained on assuming a plane beach. 

1. Introduction 
Reflection of a shallow-water soliton a t  a sloping beach is interesting not only from 

the standpoint of coastal engineering, but also with regard to  the current soliton 
research being vigorously investigated in many fields. The main concern in coastal 
engineering is to understand the nearshore behaviour of wave motions ; in particular 
to estimate the maximum run-up on the beach when tsunamis are incident. Tsunamis 
are usually treated as bores, for which the propagation of a discontinuity is discussed 
using the nonlinear shallow-water equation of hyperbolic type (Keller, Levine & 
Whitham 1960; Meyer & Taylor 1972; Whitham 1979; Hibberd & Peregrine 1979). 
The run-up of solitary waves on a beach has also been investigated by several authors 
(Peregrine 1967; Pedersen & Gjevik 1983; Kim, Liu & Liggett 1983). On the other 
hand, little progress has been made on the reflection problem in recent soliton 
research. Most work has been concerned with an infinitely extending space region. 
Exceptionally, however, reflection a t  a vertical rigid wall has been studied, because 
the mirror-image principle makes it possible to remove the wall in order to replace 
the problem by a collision of two identical solitons in an infinite region (Oikawa & 
Yajima 1973; Miles 1977a,b; Funakoshi & Oikawa 1982). Hence the purpose of this 
series of papers is to aim a t  reflection of a shallow-water soliton incident upon a 
sloping beach. To this end, we develop in this paper the edge-layer theory to derive 
a ‘reduced ’ boundary condition relevant to the simplified equation for shallow-water 
waves of small but finite amplitude in the offshore region. 

Suppose a soliton to be incident from the infinity to a sloping beach whose surface 
has a general form, as depicted in figure 1 .  It should be remarked that the incident 
wave is not necessarily a soliton, but it may be a continuous wavetrain. It is only 
assumed that the well-known weakly nonlinear and dispersive wave theory (c.g. 
Whitham 1974) is applied to the offshore region. For a short while, until the soliton 
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approaches near the shore, its propagation is not affected by the existence of the 
beach. The fluid motion is then almost in the horizontal direction. As i t  approaches 
near to the shore, however, the boundary condition a t  the beach requires that the 
normal velocity component to the beach surface vanishes, so that the fluid motion 
is obliged to be essentially two-dimensional. Accordingly the shallow-water theory 
becomes invalid in the vicinity of the beach. But as it propagates back seaward after 
reflection a t  the beach, it is expected on physical grounds that the shallow-water 
theory resumes its validity in the offshore region. Thus in the vicinity of the shore, 
we introduce a narrow region called an edge layer? in which the two-dimensional 
motion is of primary importance. Over this layer, the shallow-water theory is bridged 
to the boundary condition a t  the beach surface. 

In  $2 we recapitulate to the shallow-water theory, in which a balance between both 
weak effects of nonlinearity and dispersion is assumed. Then the wave behaviour is 
described by a simplified equation similar in form to the Boussinesq equation. For 
the edge layer, a reformulation is made in $3  so as to take account of the fully 
two-dimensional motion. Here it is noted that the edge-layer equations are linear 
because as far as a balance of the two aforementioned effects in the shallow-water 
theory is maintained, the width of the edge layer is too narrow for the effect of 
nonlinearity to accumulate over this layer. On assuming such a narrow edge layer, 
the matched-asymptotic-expansion method (e.g. Cole 1968) is employed to obtain the 
edge-layer solution. From the matching condition between the shallow-water region 
and the edge layer, we derive in $4 the ‘reduced ’ boundary condition relevant to the 
simplified shallow-water equation mentioned above. By solving such a boundary-value 
problem, reflection of a soliton is expected to be clarified. Of course, this condition 
should not be applied a t  the actual beach but in the vicinity of the beach in some 
sense. The ‘reduced’ boundary condition depends only on the average inclination of 
the beach surface, not on its local form. This suggests that the beach surface may 
be substantially replaced by a plane beach as far as the ‘reduced’ boundary condition 
is concerned. In  the edge layer, on the other hand, the precise form of the beach 
surface is naturally of essential importance. It is found that the time dependence of 
the edge layer appears parametrically only through the scale factors to be determined 

t This is a sort of boundary layer in a wide sense. But since no viscous effect is involved, the 
term ‘edge layer’ is used to avoid confusion with the ordinary boundary layer. Phenomena similar 
to this edge layer are investigated in the flexural motions of a thin elastic plate (Sugimoto 1981 a,b).  
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after solving a reflection problem in the shallow-water region. In this sense the 
edge-layer solution represents a standing wave. A limiting case is discussed in which 
the beach is no longer confined to a narrow region but to a region comparable to one 
wavelength of shallow-water waves. In  this case, there might be an alternative way 
to employ the shallow-water theory everywhere, including the beach. Even in such 
a case, however, it  is shown that the present results can be applied with some 
modifications. As a simple but typical example, we obtain in $5 an edge-layer solution 
for a plane beach. Although the solution is expressed analytically in an integral form, 
its explicit evaluation is left for a future work. 

2. Summary of shallow-water theory 
In this section the results of shallow-water theory are briefly summarized. For the 

detailed exposition, reference should be made to Whitham (1974). Two-dimensional 
and irrotational motion of an inviscid fluid of constant depth is governed by the 
Laplace equation together with boundary conditions a t  the bottom and the free 
surface : 

,84xx+q5zz = 0 for 0 < z < l + a y ,  (2.1) 

q5z = O  at x = O ,  (2.2) 

( 2 . 3 ~ )  

(2.3b) 

where x, z and t are the horizontal and vertical coordinates and the time, normalized 
respectively by a characteristic wavelength 1,  the depth h, and Z/(gh)t, g being the 
acceleration due to gravity. $(x, x ,  t )  and y(x, t )  denote the velocity potential and the 
surface elevation from the quiescent level, which are normalized respectively, by 
agl/(gh)a and a ,  a being a characteristic elevation; the subscripts imply partial 
differentiation. Here two parameters a( = a / h )  and P( = (h/1)2) imply the degree of 
finite amplitude and that of shallow water. In  the following analysis, they are 
assumed to be small and of the same order of magnitude (a  - P 3 1).  

Making use of the two small parameters thus introduced, the solution of (2.1) with 
(2.2) can be expressed as 

at z = l + a y ,  1 4 z - P r t - a P 4 x r x  = 03 

a 
11+9t+w:+ps: = 0 

a 2  n f(x, t )  x2n 00 

4 ( x , z , t )  = z ( - P p )  (2?&)! . (2.4) 
n-o 

Substitution of (2.4) into (2.3) and elimination of 7 yield 

y = -f t -la 2 f x + i P f t t t + O ( ~ P , P 2 ) ,  2 

f t t  - f i x - w x x t t  = -.(if t" +f  3 t  +O(aA P2)* 
(2.5) 

(2.6) 

These are the well-known results in the shallow-water theory. From (2.6), f ,  the lowest 
term of the velocity potential 4, is governed by the equation similar to the usual 
Boussinesq equation derived for a surface elevation. As has already been pointed out 
(see Miles 1980), however, the Boussinesq equation fails to describe correctly 
bidirectional wave propagation, because the nonlinear term is simplified by using the 
assumption for the unidirectional wave, i.e. f t  - - fx .  I n  the following analysis, 
therefore, (2.6) is employed instead of the Boussinesq equation. In  addition to this, 
we should note the form of the highest derivative f x x t t .  By using the relation 
f t t  - f,, = O(a, P), f x x t t  can equivalently be written as f,,,, or ftttt within the lowest 
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approximation. As far as an infinitely extending space region is concerned, such a 
replacement does not produce any substantial difference physically, although i t  is 
mathematically different. But if a boundary-value problem with respect to x is 
concerned, a relevant form should be selected so as to be consistent with a number 
of boundary conditions. As we shall see later, one and only one boundary condition 
can be imposed for f a t  a beach, and therefore f x x t t  is relevant. 

3. Formulation of edge-layer theory 
I n  $ 1  we have described physically the necessity of introducing an edge layer in 

the shallow-water theory when a beach is present. We now estimate a lengthscale 
over which the edge layer develops seaward. To this end, the linear theory gives a 
useful estimation as the lowest approximation. The linearized wave solution of 
(2.1)-(2.3) has two modes. One is the usual propagating mode for which the potential 
$ is given by $ K cosh ( P k z )  exp [i (kx-wt)] ,  where the wavenumber k and frequency 
w satisfy the dispersion relation @d = k tanh ( P k ) .  The other is the evanescent 
mode, which is confined to the neighbourhood of obstacles or boundaries. This mode 
has a potential of the form q5 K cos ( P k z )  exp ( -  kx -  iwt)  ( k  > O ) ,  whose dispersion 
relation is given by @w2 = - k tan ( f i t%) .  For a frequency w (  = O(1)) of the incident 
wave, the positive wavenumber takes @k x IT,  IT, . . . . This shows that the evanescent 
mode has a local influence over the uniform bed to a distance x x l l k  x @/n 4 1 
(which will be confirmed later by the edge-layer solution ( 5 . 1 9 ~ ) ) .  Hence the edge 
layer appears in the vicinity of x = 0, in which the two-dimensional motion is seen 
to be essential from the structure of $. For a proper description of this layer, we 
stretch the coordinate x near x = 0 in terms of a new variable ( =  x/@. The 
introduction of ( implies the renormalization of the horizontal scale x by h. Except 
for x ,  the other quantities are used as defined before. I n  particular, it should be noted 
that time t is still normalized by Z/(gh): not by h/(gh)i .  This means that the timescale 
in the edge layer is still assumed to be characterized by that in the shallow-water 
region. 

Changing the variable from x to 6 in (2.1)-(2.3), the basic system of equations is 
rewritten as 

$ a + $ Z Z  = 0 for 0 < z < l + q ,  (3.1) 

$ z  = 0 a t  z = 0, (3.2) 

(3.3a) 

(3.3b) 

where q5 is now a function of 5, z and t ,  while 7 is a function of 6 and t. In  addition 
to (3.2) and (3.3), the boundary condition a t  the beach should be imposed explicitly 
in the edge-layer theory. Let the beach surface be given by the general form 5 = b ( z )  
( -& < 5 < 0), where -& is the position of the shoreline.? Then the boundary 
condition takes the form 

(3.4) 

where v, denotes the velocity component along the outward normal to the beach 
surface. I n  light of the normalization of the velocity potential, note that p-:$[ and 

t Here we assume a one-to-one correspondence between 6 ( =  b ( z ) )  and z ,  namely that E = b ( z )  
is a monotonically decreasing function of z .  
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&z represent respectively the velocity components along the 5- and z-directions, 
normalized by ag/(gh)k On the other hand, the edge layer is assumed to vanish 
seaward, so that the shallow-water region reappears in the region x = O(1).  In  the 
overlapping region between them, q5 and 7 in the edge layer should match smoothly 
with those in the shallow-water region in the vicinity of x = 0. Following the idea 
of the matched-asymptotic-expansion method (e.g. Cole 1968), such a matching 
region corresponds to [+ 00 but still x = 0. Thus the matching conditions for (9 and 
7 a t  [+ 00 are obtained by expanding (2.4) and ( 2 . 5 )  around x = 0 and later replacing 
x by @c. Denoting them by q5w and qa, respectively, we have 

4 m  = [f+@fx[ + W x x ( t 2 -  z' )~X=n + O@),  (3 .5a)  

700 = [ - f t - ~ f x t [ - ~ a f ~ + ~ ~ P ( f t t t - f x i t  f12)Ix=n+O(a@,@), (3 .5b)  

where f ,  fx, fix, etc. are evaluated at x = 0, and therefore they are functions o f t  only. 
Hereinafter the symbol [ . . . I x = ,  implying evaluation at  x = 0 will be omitted for 
simplicity. Hence the matching conditions for q5 and 7 take the forms 

fp+Qt, and q+yw as [+a. (3 .6)  

Equation (3 .1)  together with (3.2)-(3.6) constitutes the boundary-value problem for 
the edge layer. 

I n  the light of (3 .6) ,  let us introduce $ defined as 

q5 = $00 + 2 @ f x h  (3 .7)  

where $ is an unknown function of 6, z and t which represents the deviation of the 
edge-layer solution from the shallow-water theory owing to the presence of the beach. 
The factor @ is suggested from ( 3 . 5 a )  and the condition (3.11) appearing later, 
because if it were not introduced @ would appear on the right-hand side of (3.11). 
Since is evaluated up to O(p) in (3 .5a) ,  + should be evaluated up to O ( @ ) .  Upon 
substituting (3 .7)  into ( 3 . 1 ) ,  $ must satisfy the Laplace equation 

$'5'5+ $22 = 0 (3.8) 

kZ = 0 at z = O .  (3 .9)  

and the boundary condition a t  the bottom surface 

To impose the boundary conditions a t  the free surface, the small parameter a enables 
us to employ them in the expanded form around z = 1 : 

(3 .10a)  

(3.10 b )  

where we have discarded the nonlinear terms O(a) as well as O(P),  since we are 
concerned with $ up to O ( @ ) .  

The boundary condition at  the beach is now written as 

< [ = b(z )  < 0. (3.11) 

On the other hand, owing to (3 .7) ,  the matching condition (3 .6)  simply assumes the 
form 

$ + O  as g+m. (3.12) 
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It is thus found that the problem of finding $ is reduced to solving the Laplace 
equation (3.8) under the boundary conditions (3.9), (3.10a), (3.11) and (3.12); that 
is, to finding an irrotational flow field in the semi-infinite channel region caused by 
the source and sink distributed over the boundary a t  5 = b ( z ) .  After solving $, the 
elevation 7 is obtained from (3.10b). As will be shown in $4, the condition (3.11) is 
replaced by (4.4), which does not involve t explicitly, so that $ is independent of t .  
Hence the time dependence of q5 and 7 in the edge layer appears parametrically only 
through the factors f,, fxz, and so on a t  x = 0, which are determined after solving 
a reflection problem in the shallow-water region. I n  this sense, the edge-layer solution 
represents a standing wave. 

4. Reduced boundary condition 
Before seeking the edge-layer solution, we consider the boundary condition (3.11) 

and the matching condition (3.12). From the fluid-dynamical interpretation, (3.1 1 )  
gives the strength of source and sink distributed over the boundary, while (3.12) 
indicates no fluid flux from an  infinite open end. Since there is no other source or sink 
in the flow field, a compatibility condition must be imposed on (3.11) to  guarantee 
mass conservation in the edge layer. Indeed, integrating (3.8) over the edge-layer 
region and applying Stokes’ theorem, we find that the following line integral along 
the boundary as of the region concerned must vanish : 

Noting (3.9), (3.10a), and (3.12), and using (3.11), i t  follows from (4.1) that 

1 
f x  -[f,Jbdz+p?f,zj b d(zb)+ipf,zxJ b d ( z ~ ~ - + z 3 ) ] + ~ ( ~ )  = 0, (4.2) 

where j b  denotes integration along the sloping beach b(z), and f, $. 0 has been 
assumed. Further noting that the depth is unity and that [zb],,, = -ts and 
f,,, =fzt t+O(a, /3)  from (2.6), we have 

f, = @tsf,z+O(/R. (4.3) 

Substituting this into (3.11), we obtain simply 

1 I d  
$ 5 -b z z  $ = --[--(zb)+l]+O(/?) 2 6,dz a t  - g s  < 6 = b ( z )  < 0. (4.4) 

On integrating (4.4) over the depth, it is indeed found that the total fluid flux across 
the boundary cancels out. In  addition to such mass conservation, (4.3) is interpreted 
differently as follows. Remembering that f, and f,, are evaluated at x = 0, (4.3) is 
regarded as a ‘reduced’ boundary condition for (2.6) at x = 0. By the term ‘reduced’ 
we mean that (4.3) is derived by averaging the effect of edge layer to recast the exact 
boundary condition into a form relevant to (2.6). By solving (2.6) under (4.3), it is 
expected that the behaviour of shallow-water waves during reflection a t  the sloping 
beach is clarified. After completing such an ‘exterior ’ problem, the time-dependent 
factorsf,, f,,, and so on a t  x = 0 can be specified. The exterior problem is left for 
a forthcoming paper. Here it is emphasized that (4.3) is no longer applied a t  the beach 
in the exact sense, but in the vicinity of the beach x = 0. t  Also i t  is emphasized that 

t By invoking Taylor’s theorem, (4.3) is formally regarded as the first two terms of 
f,(z = -pits) = 0, though z = -& is located outside the region of validity of (2.6). It is of interest 
to note that this corresponds to extending the region of constant depth to the shoreline and applying 
f, = 0 a t  that point. 
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(4.3) depends only on ts, not on the local form of the beach surface. Noting again 
that the depth is unity, ts represents the inverse of the inclination of the chord 
connecting the coordinate origin and the shoreline to the horizontal. I n  other words, 
as far as (4.3) is concerned, a beach surface of general form may be replaced by a 
plane beach with constant inclination t;l. 

Next we discuss the magnitude of inclination ti1 of the beach surface. I n  the very 
special case with a vertical plane wall ( b  = 0 ) ,  (4.3) is reduced to the usual boundary 
condition f x  = 0, as expected. There then arises no need to introduce @, because (3.1 1 )  
is automatically satisfied. I n  this case, no edge layer appears and the shallow-water 
theory can be applied up to  the 'beach'. This is physically obvious from the mirror- 
image principle. Incidentally, if a soliton is incident on such a vertical wall, i t  is well 
known that the reflected soliton undergoes only a phase shift O(p)  (Oikawa & Yajima 
1973; Miles 1977a; Funakoshi & Oikawa 1982). For small values of ti1, on the other 
hand, ti1 has the lower limit ti1 = O(@), which can easily be understood from the 
scaling discussion given in $3. For such a limit case, the variation of the beach surface 
is so gentle that the width of the edge layer becomes comparable to one characteristic 
wavelength. Even in this special case, the results (4.3) and (4.4) can still be applied 
with some modifications. To specify a gentle slope O(@), we assume that a beach 
surface is expressed by = p%,(z), where b,(z) is O( 1 ) .  Since 5 is subject to a variation 
O(P-:), we must start again with evaluating 4, in (3.5). From (2.4), $m is now 
expressed as 

(4.5) 

Substitution of (3.7) with (4.5) into (3.4) yields 

where to = -bo( l ) .  Taking the same line integral as in (4.1), i t  follows from the lowest- 
order terms that 

from which the right-hand side of (4.6) takes the form 

(4.7) 

Hence the condition (4.3) is now replaced by (4.7). I n  connection with the footnote 
concerning (4.3), we only note that (4.7) is formally expressed asfx(x = -to) = 0. Also 
the condition (4.7) can alternatively be written in terms off, and f x x  only. Using (2.6), 
i.e. f t t  - f x x  = O ( a ,  ,8), and noting that 

(4.7) can be expressed as 

L1(E) = Lz(g) > (4.10a) 
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and 

g a 2  t; a 4  

a t 2  4 !  at4 

g a 2  g: a 4  

L,=  1+--+--+ ... 

L2 = [,+--+--+ .... 
3 ! a t 2  5 ! a t 4  

Applying the Fourier transform defined by 

to (4.10a), it  follows that 

By the inverse transform, (4.12) is expressed as 

+ ...+ O(P) ,  _ -  af - ‘g a‘Y 6; a4f 

_ -  az f  - lf+5,aaf+*..+,(p), 

ax OaX2 3 at2ax2  

ax2 toax 3 w a x  

or alternatively 

(4.10b) 

( 4 . 1 0 ~ )  

(4.11) 

(4.12) 

(4.13a) 

(4.136) 

which is the ‘reduced’ boundary condition for the case with ti1 = O ( @ ) .  It should 
be remarked, however, that  (4.13) contains the error O ( p )  while (4.3) contains one 
O ( @ ) .  I n  this sense, (4.13) is regarded as an approximate boundary condition to (2.6) 
to the lowest order. It should also be noted that (4.13) involves the additional terms, 
and some appropriate truncation is necessary for practical use. There are two 
possibilities which allow the truncation by a few terms. One is the case for which to 
is sufficiently small. This is nothing but the case already treated ( O ( @ )  < ti1 = O( l ) ) ,  
for which (4.13) is reduced to (4.3). The other is the case for which the temporal 
variation off is fairly slow, so that the higher-order derivatives off with respect to 
t become small. This imposes some restriction on the incident waves. In  this 
connection we should mention the following point. For a gentle slope with the 
inclination O ( @ ) ,  an ‘additional’ elevation of the free surface in the edge layer may 
occur by the shoaling process as a wave approaches the shoreline. Then there arises 
some concern as to whether the nonlinear terms neglected in (3.10) become comparable 
to the retained terms. But it is found from the linear theory that the increases in the 
elevation and wave slope remain within a variation of order unity. To see this, we 
note that the matching region is located at a distance ‘g, = O(p-i) from the shoreline, 
so that [,/& is of order unity. From the ‘shallow-water approximation ’ for a plane 
beach with an inclination 8( = O(@)  << l ) ,  i t  is known that the ratio of the amplitude 
a ,  a t  the matching region to a, a t  the shoreline is given, for a perfect reflection, by 
J0[2(/35, /0)h] ,  where J ,  is the Bessel function of order zero and w (  = O(1))  is a 
frequency of the incident waves (cf. (7.45) in Whitham 1979). Here we should 
emphasize again that the timescale in the edge layer is Z/(gh): not h/(gh):.  Hence the 
increase in the elevation remains finite, and the increase in the wave slope is also found 
to remain finite.? This suggests that  the accumulation of the nonlinearity in the cdge 

-i For an imperfect reflection, it happens that the elevation and wave slope increase eonsiderably, 
which may eventually lead to wave breaking. This tendency is found for waves of relatively large 
amplitude (elevation) over a very gentle beach slope (Peregrine 1967; Pedersen & Gjevik 1983). 
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layer is still negligible, which is naturally understood from the assumption that the 
width of the edge layer is comparable to one wavelength of the incident waves. 

= O ( @ ) ,  
there may be an alternative way to employ the simplified shallow-water equation on 
an uneven bottom. Indeed, Mei & Le MBhaut6 (1966) and Peregrine (1967) derived 
a system of dispersive shallow-water equations which takes account of the gentle 
variation of the bottom surface O(&. Also Kakutani (1971) and Johnson (1973) 
derived a Korteweg-de Vries equation with variable coefficients for a far gentler 
uneven bottom corresponding to <gl = O ( @ ) .  Among them, Peregrine (1967) inves- 
tigated the climb-up behaviour of a solitary wave based on his system of equations. 
But the essential difference from the present theory lies in the fact that  his system 
does not take account of the existence of a shoreline, and therefore it is inapplicable 
up to there. In  other words, his system describes an intermediate region between the 
offshore region of constant depth and a vicinity of the shoreline. I n  the present 
analysis, on the other hand, it is emphasized that the existence of a shoreline is 
explicitly assumed. 

To investigate the behaviour of solitary waves on such a gentle beach as 

5. Edge-layer solution for a plane beach 
So far we have been concerned with the derivation of the ‘reduced’ boundary 

condition. Here we demonstrate how to  obtain an edge layer solution explicitly. Since 
it is difficult to  obtain a solution for a general beach surface, we now restrict ourselves 
to a plane beach with constant inclination tan 8 = O( 1 )  ; that is, 6 = b(z )  = - z cot 8. 

The edge-layer solution to (3.8) under the boundary conditions (3.9), (3.10a), (3.12) 
and (4.4) is easily obtained by the Green-function method. Let G(C, z ’ ;  6, z )  be the 
Green function defined in the semi-infinite trapezoidal domain S (see figure 2) : 

G,,+G,,,f = S ( ~ - ~ , Z ’ - Z ) ,  (5.1) 
with G,. = 0 on a s ,  where S denotes the delta function and G,. denotes the outward 
normal derivative to the boundary i3S. Here i t  should be remarked that Gnr =k 0 a t  
the infinite open end, because an integration of (5.1) over the whole domain S‘ yields 
unity. But using (3.12) in applying Green’s formula, the solution to (3.8) is expressed 
as 

$( 6, z )  = s,’ G( - z’ cot 8, z’ ; 6, x )  (z’ - i) dz’ . (5.2) 

Thus solving (3.8) is reduced to finding the Green function. To find it,  a sophisticated 
method of conformal mapping provides a powerful tool. Invoking the well-known 
theorem of Schwarz and Christoffel (e.g. Milne-Thomson 1962), we transform the 
domain S’ into the semi-infinite upper plane of 6‘ with correspondence of the vertices 
A,  and A,  in the 2‘ plane to f;‘ = - 1 and f;‘ = 1 respectively (see figures 2 and 3). 
Upon defining the complex variable 2‘ = c+iz’,  the solution to the following 
differential equation provides such a transformation from the 2’ plane to the complex 
5‘ plane: 

(5.3) 

where C, is a constant to be determined later. Integration of (5.3) is rather difficult 
for an arbitrary 8. However, i t  can be solved analytically if we assume that 8 = x / m ,  
m( 2 2) being an integer. To do so, we first introduce a complex-parametric plane w’ : 

~ = C,(5‘+ 1)oln-l (5‘- l ) -@/x,  
d5’ 
dZ’ 
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A4 = -  -- 

€' 
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FIQURE 2. Complex 2' plane ; several special points are designated by At (i= 1 ,2 ,3 ,4 )  : A ,  = co, 
A,  = -cot Of  i ,  A ,  = 0 and A, = 00 ; for explicit indication of the singular points A ,  and A,  in (5.3), 
the semi-infinite trapezoidal region is indented by the small circular arcs; the inside domain is 
designated by S ,  while its boundary is ah''. 

I 
I 
I 
I 

n A a  I 
/ / /  m - 1  / / 0 ,  

-.- A1 

S' plane 

FIQURE 3. Complex 6' plane; each A, (i = 1 ,2 ,3 ,4 )  corresponds to the respective point indicated 
in figure 2: A ,  = A,  = 00, A ,  = -1 and A,  = I .  

In this w' plane the upper plane of 5' is transformed into the wedge region (see 
figure 4). Rewriting (5.3) in terms of w', it is reduced to 

whose solution is easily obtained as 
m--1 

2' = -c, ,-0 z wjlog(w'-w,)+c,, 

where w, ( j=O, l ,  ..., m-1)  are the m roots of the equation wlm = 1, that is, 
wj = exp (2nijlm) = exp (ZiSj), and C, is an arbitrary constant as well as C,. Here and 
henceforth the principal value of the logarithmic function is defined by taking the 
range, -n arg log (...) < x .  To complete the solution (5 .6) ,  the two constants C, 
and C, should be determined by specifying the correspondence of two special points 
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FIGURE 4. Complex w‘ plane; each A, (i = 1 , 2 , 3 , 4 )  corresponds to the respective point indicated 
in figure 2 :  A ,  = A ,  = 1 ,  A ,  = 0 and A,  = m .  

A ,  and A ,  in the Z‘ and 5‘ planes. I n  applying the theorem of Schwarz and Christoffel, 
A ,  is already assumed to correspond to 6‘ = - 1, and therefore w’ = 0, while A ,  
corresponds to 5‘ = 1 and w’ = 00. Considering first A,, we substitute 2’ = 0 and 
w’ = 00 into (5.6). Noticing that Cg;’ wj  = 0, C ,  must be chosen to  be zero. Next for 
A,, substituting Z‘ = -cot B+i and w‘ = 0 in (5.6) and paying attention to taking 
the principal value, i t  follows that C, = l /n,  where the relation Cg;’jwj = -+m( 1 + i  
cot 0 )  has been used. Thus two constants are determined as 

c, = l / n ,  c, = 0. (5.7) 

Hence the mapping from Z’ to via w’ has been completed. The correspondence of 
several special points in the three planes is indicated in figures 2 4 ,  where the 
boundary, of course, corresponds to the boundary. 

After such a preparation, let us now seek the Green function G. From the standpoint 
of the fluid-dynamical interpretation, G represents the velocity potential for the flow 
field caused by a source of strength 1/2n placed a t  c = [ and z‘ = z in S’. To obtain 
G, it is convenient to introduce the complex velocity potential F(2’) defined by 

F(2’ = c+iz’)  = G([’,z’)+iH(c,z’), (5.8) 

where H(C, z‘) is the stream function. From the theory of conformal mapping it is 
well known that the mapping does not destroy the harmonic properties of a function 
and that a streamline in the 2’ plane corresponds to the same one in the 5‘ plane. 
Also it is known that the mapping brings the source a t  2’ = Z = [+ iz  into that a t  
6‘ = 6 with its strength conserved. Thus the explicit form of F in the 5‘ plane can 
easily be obtained by using the mirror-image principle : 

where C* denotes the complex conjugate of 5. The Green function in the 5‘ plane is 
obtained by taking the real part of (5.9) : 

1 
2n G(G, G ; Yrj Yi) = - log 116 -Y)  (5‘ -[*)I, (5.10) 

where we have set 6‘ = ci+i& and 5 = Cr+iCi. The Green function G([‘, z ’ ;  [ , Z )  in 
(5.2) would be derived if the transformation (5.4) and (5.6) with (5.7) were inversely 
solved to express 6‘ in terms of 2’ only. Because of the simple form of (5.10), however, 
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i t  is rather advantageous to employ not G([', z ' ;  [, z )  but (5.10) itself in evaluating 
(5.2). To this end, we transform the integration (5.2) along the beach A,A, in the 
Z' plane to that in the 5' plane. I n  the w' plane, A,A, is given by (see figure 4) 

I (5.11) w~ = sfe-iO 

wheres'isreal(0 < s' < m).Substitutingthisinto(5.6),andsettingZ' = (-cot O + i )  z ' ,  
the relation between z' and s' is obtained as 

I m-1 

(5.12) 

where Gi(j = 0, 1,2,  . .. , m- 1 )  are defined by Gi = wj exp (iO). I n  the 6' plane, on the 
other hand, A,A, corresponds to the segment along the real axis from 6' = 1 to 
6' = - 1 .  Setting 6' = ci, it  follows from (5.4) with (5.11) that  

(5.13) 

Eliminating s' in (5.12) by using (5.131, z' is expressed in terms of &. Using 2' = ~ ' ( c : )  
thus derived, (5.2) is transformed into an integration with respect to ch: 

with 

(5 .14~)  

(5.14b) 

where (5.14b) is obtained directly from (5.3) with O/n = l /m and C, = 1/n by setting 
Z' = -exp ( -iO)z'/sin O and 5' = ci. Thus $ can be expressed analytically in an 
integral form. It is difficult, however, to carry out the integration analytically, so that 
we must evaluate the integral by a numerical method. This will be studied in a 
forthcoming paper. 

Finally we shall confirm whether the matching condition (3.12) is satisfied by the 
solution (5.144, although the boundary condition (4.4) derived from mass conser- 
vation guarantees it equivalently. To examine this, we seek an asymptotic solution 
of @ as [+ co and 0 < z < 1 .  The infinity t+ 00 in the 2' plane corresponds to  the 
infinity = cr+iQ+ 00 in the 6' plane (ci > 0), and i t  also corresponds to the 
neighbourhood of w' = 1 in the w' plane. Putting 5 = Cr+iQ = p exp (ia) (p >> 1 ,  
0 < u < x) in (5.4), w is given approximately by 

(5.15) 
2 

mP 
w - 1 +-ee-iff+O(p-2). 

Substituting this in (5.6) with (5.7),  it  follows that 

1 1 m-1 

Z = ( + i z  - -- N -?llog(Ke-i")+O(p-l), mP (5.16) 

where the real number K is defined by log K = Egyl wilog (1 -wi). From this, the 
asymptotic correspondence between Z and 5 as Z-t co is established: 

where [+a and 0 < z < 1 .  

(5.17) 
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Next let us evaluate I&(, z )  as (+ co by using ( 5 . 1 4 ~ ) .  Since [+ 00 as (+GO,  G is 
approximated by 

= - 1 10gp--c; 1 cosB+o(p-2), 
7t 7cP 

(5.18) 

where the first term (log p)/x - ( implies G, - 1 as [+ 00. From the symmetry 
properties of G with respect to its arguments, i t  also implies Gc - 1 as c + 00, which 
is consistent with the previous remark that Gnf + 0 a t  the infinite open end. Inserting 
(5.18) into (5.14a), and using (5.17), the asymptotic form of 11. as (+co is obtained 
as 

+ ( E ,  z )  - Ae-”t cos (nz) + O(e-2XE), ( 5 . 1 9 ~ )  

with (5.19b) 

where we note that the first term of (5.18) does not contribute to ( 5 . 1 9 ~ )  because no 
total flux is assumed across c = -2’ cot 8. Hence it is verified that $ decays 
exponentially as [+a and satisfies the matching condition (3.12). It should be 
remarked here that ( 5 . 1 9 ~ )  corresponds to the evanescent mode. Finally we note that 
for a gentle slope O ( @ ) ,  the edge layer solution is obtained on replacing z’-$ in (5.2) 
by (4.8) divided by 2f,. 

6. Concluding remarks 
In this paper the edge-layer theory has been developed for the sloping beach to 

derive the ‘reduced ’ boundary condition (4.3) relevant to the shallow-water equation 
(2.6). As far as (4.3) is concerned, however, it can also be derived intuitively without 
any introduction of an edge layer. Noting that the beach surface is given by x = @b(z),  
we apply the boundary condition a t  the beach surface directly to q5 given in (2.4) ; 
that  is, $x-/T%2 q5z = 0 a t  x = @b(z). Expanding the condition at x = @b(z) around 
x = 0, one obtains 

d d 
f ,+@fx,,(zb)+~~f, , ,[ ,(zb2)-z~]+o(b) = o a t  .x = 0. (6.1) 

Integrating (6.1) over the depth and noting that [ f,.,],=o = O(@) from (4.9) and (6.1), 
we recover (4.3). Therefore i t  is found that the ‘reduced’ boundary condition is 
derived by averaging the boundary condition a t  the beach surface. But the important 
point is that the edge-layer theory can not only justify the relevance of the averaging 
but can also provide a correct description of the near-shore behaviour. 

Last but not least, it  should be remarked that the presence of the sloping beach 
gives rise to a correction O(@) to the shallow-water waves through the ‘reduced’ 
boundary condition (4.3), and even a correction O(1) through (4.13) when the beach 
slope is as gentle as O ( P ) .  This is to be compared with the case of the vertical wall, 
for which the corresponding boundary condition is simply given by f, = 0 and the 
effect of the wall remains to give only a phase shift 0(/3) (Oikawa & Yajima 1973; 
Miles 1977a; Funakoshi & Oikawa 1982). 

The authors would like to express their gratitude to the associate editor and referees 
for a number of valuable suggestions and criticisms which have led to the improvement 

13-2 



382 N .  Sugimoto and T .  Kakutani 

of the original manuscript. In particular, they are indebted to Dr D. H. Peregrine 
(one of the referees) who has strongly suggested the revision to include a general beach 
surface instead of a plane beach in the original manuscript. The authors’ thanks 
are also due to Professor H. Hasimoto for his valuable discussions. During a course 
of this study, we have received a Grant-in-Aid for Scientific Research from the 
Ministry of Education, Science and Culture of Japan. 

R E F E R E N C E S  

COLE, J. D. 1968 Perturbation Methods in Applied Mathematics. Blaisdell. 
FUNAKOSHI, M. & OIKAWA, M. 1982 A numerical study on the reflection of a solitary wave in 

HIBBERD, S. & PEREGRINE, D. H. 1979 Surf  and run-up on a beach: a uniform bore. J .  Fluid Mech. 

JOHNSON, R. S .  1973 On the development of a solitary wave moving over an uneven bottom. Proc. 

KAKUTANI, T. 1971 Effects of an uneven bottom on gravity waves. J .  Phys. Soc. Japan 30,272-276 

KELLER, H. B., LEVINE, D. A. & WHITHAM, G. B. 1960 Motion of a bore over a sloping beach. 

KIM, S. K., LIU P. L.-F. & LIGGETT, J. A. 1983 Boundary integral equation solutions for solitary 

MEI, C. C. &, LE MEHAUTE, B. 1966 Note on the equations of long waves over an uneven bottom. 

MEYER, R. E. & TAYLOR, A. D. 1972 Run-up on beaches. In  Waves on Beaches (ed. R. D. Meyer). 

MILES, J. W. 1977a Obliquely interacting solitary waves. J .  Fluid Mech. 79, 157-169. 
MILES, J. W. 19773 Resonantly interacting solitary waves. J .  Fluid Mech. 79, 171-179. 
MILES, J. W. 1980 Solitary waves. Ann. Rev. Fluid Mech. 12, 11-43. 
MILNE-THOMSON, L. M. 1962 TheoreticaE Hydrodynamics. Macmillan. 
OIKAWA, M. & YAJIMA, N. 1973 Interactions of solitary waves-a perturbation approach to 

PEDERSEN, G. & GJEVIK, B. 1983 Run-up of solitary waves. J .  Fluid Mech. 135, 283-299. 
PEREGRINE, D. H. 1967 Long waves on a beach. J .  Fluid Mech. 27, 815-827. 
SUGIMOTO, N. 1981 a Nonlinear theory for flexural motions of thin elastic plate, part 1 : higher 

order theory. Trans. A S M E  E :  J .  Appl .  Mech. 48, 377-382. 
SUGIMOTO, N. 1981 b Nonlinear theory for flexural motions of thin elastic plate, part 2 :  boundary 

layer theory near the edge. Trans. A S M E  E:  J .  Appl.  Mech. 48, 383-390. 
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience. 
WHITHAM, G. B. 1979 Lectures on Wave Propagation. Springer. 

shallow water. J .  Phys. SOC. Japan 51, 1018-1023. 

95, 323-345. 

Camb. Phil. Soc. 73, 183-203. 

(and errata: 30, 593). 

J .  Fluid Mech. 7 ,  302-316. 

wave generation, propagation and run-up. Coastal Engng 7, 299-317. 

J .  Geophys. Res. 71, 393-400. 

Academic. 

nonlinear systems. 1 .  Phys. Soc. Japan 34, 1093-1099. 


